In [2]:
import numpy as np
import tensorflow as tf
使用 NumPy 生成假数据(phony data), 总共 100 个点
In [11]:
x_data = np.float32(np.random.rand(2, 100)) # 随机输入
y_data = np.dot([0.100, 0.200], x_data) + 0.300
In [8]:
import matplotlib.pyplot as plt
plt.plot(x_data[0], x_data[1])
plt.show()
构造一个线性模型
In [13]:
b = tf.Variable(tf.zeros([1]))
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
y = tf.matmul(W, x_data) + b
最小化方差
In [14]:
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
初始化变量
In [15]:
init = tf.initialize_all_variables()
启动图 (graph)
In [16]:
sess = tf.Session()
sess.run(init)
拟合平面
In [17]:
for step in xrange(0, 201):
sess.run(train)
if step % 20 == 0:
print step, sess.run(W), sess.run(b)
In [ ]: